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Abstract—The alternating-direction implicit finite-difference
time-domain (ADI-FDTD) technique is an unconditionally stable
time-domain numerical scheme, allowing the� time step to be
increased beyond the Courant–Friedrichs–Lewy limit. Execution
time of a simulation is inversely proportional to � , and as
such, increasing� results in a decrease of execution time. The
ADI-FDTD technique greatly increases the utility of the FDTD
technique for electromagnetic compatibility problems. Once the
basics of the ADI-FDTD technique are presented and the differ-
ences of the relative accuracy of ADI-FDTD and standard FDTD
are discussed, the problems that benefit greatly from ADI-FDTD
are described. A discussion is given on the true time savings
of applying the ADI-FDTD technique. The feasibility of using
higher order spatial and temporal techniques with ADI-FDTD
is presented. The incorporation of frequency dependent material
properties (material dispersion) into ADI-FDTD is also presented.
The material dispersion scheme is implemented into a one-dimen-
sional and three-dimensional problem space. The scheme is shown
to be both accurate and unconditionally stable.

Index Terms—Alternating-direction implicit (ADI), ADI finite-
difference time-domain (ADI-FDTD) method, FDTD, higher order
schemes, material dispersion, unconditionally stable.

I. INTRODUCTION

T HE STANDARD finite-difference time-domain (FDTD)
scheme is a well established technique for simulating elec-

tromagnetic (EM) systems. Two major limitations of FDTD are
the simulation errors and execution time. The simulation errors
are due to discretizing space and time, and are measured typi-
cally through the amount of numerical dispersion [1]. Long exe-
cution times result from the requirement of a time-domain signal
to “ring out” or reach steady state.

The execution time of a FDTD simulation is inversely pro-
portional to the size of the chosen time step. A major limitation
of existing FDTD schemes is the conditionally stable nature of
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the technique. For stability of the FDTD scheme, one needs to
ensure that

(1)

where is the maximum speed of propagation in the computa-
tional volume, and , , and are, respectively, the cell
sizes in the , , and directions. This criterion is referred to
as the Courant or the Courant–Friedrichs–Lewy (CFL) stability
condition [1], [2] and [3], and essentially states that the numer-
ical speed of propagation must exceed the physical speed of
propagation for numerical stability.

Obviously, to ensure a faster central processing unit (CPU)
run time for the FDTD scheme, the time step needs to be
as large as the expression in (1) allows for numerical stability.
From (1), it is seen that the maximum possible time step is based
on the minimum required spatial cell size. The size of the spa-
tial increment is governed by two requirements. First, the fi-
nite-difference grid should resolve the highest frequency of in-
terest, which is accomplished usually by using at least 20 cells
per wavelength at this frequency. Second, the cell’s size should
be small enough to ensure that all objects in the computational
volume are spatially resolved by the cells. For low frequencies
or small object dimensions, this second requirement is the most
restrictive on (where represents any of the spatial cell
sizes, i.e., , , or ) and can result in long computa-
tion times because of the CFL stability condition. Calculating
scattering from an object with a thin material coating, lightning
interaction with aircraft, modeling regions with noncubic cells
with large aspect ratios (where is governed by the smallest
noncubic cell dimension), or propagation on transmission lines
with conductors of small dimension are four examples where re-
solving the object (i.e., the thin material, the aircraft, source re-
gion modeling, or the conductors) gives a cell size much smaller
than would be needed to resolve the frequency of interest. In
these examples, the CFL bound on leads to undesirable and
often unrealistic execution times.

In order to solve these types of problems with time-domain
difference techniques, a method for eliminating the CFL sta-
bility condition is desirable. The alternating-direction implicit
(ADI) FDTD method, introduced by Namiki [4] and Zhenget
al.[5], [6], is unconditionally stable. The ADI-FDTD scheme
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allows to be increased which can result in substantial reduc-
tions in the total execution time of numerical problems.

In this paper, various aspects of the ADI-FDTD scheme are
discussed, including:

1) overview of the scheme;
2) defining the types of problem where ADI-FDTD is ben-

eficial;
3) time savings of ADI-FDTD over FDTD;
4) higher order schemes;
5) introducing the implementation of frequency dependent

materials (i.e., material dispersion).

The purpose here is to provide an understanding of where the
ADI-FDTD scheme would be most beneficial in numerical
EMC applications as well as presenting concepts which will
expand the usefulness of the ADI-FDTD scheme in the EMC
community.

II. OVERVIEW OF THE ADI-FDTD SCHEME

The ADI technique is well reported in the study of parabolic
equations [2]. The ADI technique takes its name from breaking
up a single implicit time step into two half time steps. In the first
half time step, an implicit evaluation is applied to one dimen-
sion and an explicit evaluation is applied to the other, assuming
two dimensions in the problem statement. For thesecondhalf
time step, the implicit and explicit evaluations are alternated, or
switched, between the two dimensions. The dimensions to alter-
nate between are typically spatial; however, temporal variables
can also be used [7].

ADI as applied to the three-dimensional (3-D) FDTD tech-
nique was introduced by Zhenget al.[5], [6]. The ADI-FDTD
method removes the CFL stability restraint, allowing any choice
of for a stable scheme. However, the accuracy is a function
of . Although any choice of will be stable, the errors in-
troduced may make some values unacceptable with respect to
accuracy. It will be shown that the choice of is determined
by the required accuracy, and not by stability.

Any ADI scheme has the advantage of being uncondition-
ally stable, and therefore implicit. ADI possess a significant
advantage over other implicit schemes, i.e., the elimination
of large matrix operations. The ADI-FDTD scheme forms
tridiagonal, band-3 matrices, rather than the large nonbanded
sparse matrices formed by other implicit schemes (which are
computationally expensive to solve) [8]–[10]. Tridiagonal
matrices have very simple and efficient solution techniques
[2], [8]. ADI-FDTD requires less memory and possesses
faster solution times than other implicit schemes, and retains
the simplicity that is inherent in the traditional Yee FDTD
technique [11].

The ADI-FDTD scheme requires splitting the full time step
into two half time steps. Applying this procedure to Maxwell’s
equation results in a tridiagonal matrix for each of the-field
components. Once the-field components are obtained, the

-field components are solved explicitly. The details for this
type of formulation are found in [12]. The ADI-FDTD scheme
as formulated in [5], [6], [12] hassecond-order accuracy in
space and time, similar to the standard FDTD. The expression
given in [12] assumes constantand . Slight variations are

needed to include variable, and , and lossy material. A com-
plete set of update equations for variable, and , and lossy
material is found in [13].

Care must be taken in interpreting the field values at the half
time steps. As explained in [8], the half time-step field values
should not be treated as true field values. If one performs an
accuracy analysis on the half time steps, one discovers that the
half time-step quantities are only accurate tofirst order. It may
be useful to reference the half time-step quantities as interme-
diate values, which must be re-combined with other quantities
to be valid.

It is of interest to compare the accuracy of ADI-FDTD with
that of the standard FDTD. ADI-FDTD uses central-difference
formulas to evaluate both the time and space derivatives. These
expressions are shown to besecond-order accurate. However,
since ADI-FDTD manipulates the temporal evaluations, the
final accuracy, in time, may be an issue. To illustrate this,
numerical dispersion for both FDTD and ADI-FDTD is inves-
tigated.

The amount of numerical dispersion in a scheme is directly
correlated to the level of accuracy used in evaluating the deriva-
tives. Thus a higher order central-difference formula would lead
to lower dispersion error and more accurate results. A disper-
sion analysis can be viewed as a measure of the accuracy of all
derivatives, time and space, taken together. A numerical disper-
sion analysis for the FDTD scheme is given in [1], and a disper-
sion analysis for the ADI-FDTD scheme in given in [14]. The
results given in [14] for the ADI-FDTD dispersion analysis are
for time steps ( ) either greater or less than the CFL stability
condition and does not give a direct comparison of ADI-FDTD
and FDTD for a given .

In order to obtain an assessment of the relative accuracy of the
two different schemes, a dispersion analysis at the CFL limit is
performed. Using the dispersion relations given in [1] and [14]
a dispersion analysis for the two schemes was performed for
a cubic cell (i.e., ) and for a temporal
sampling set to the CFL stability constraint ( ).
In this analysis the spatial sampling as taken to be

where is the smallest possible wavelength of the source
signal in the problem space. is used here, and is the
nominal spatial sampling used in most applications, because of
the memory limitations in commonly used computers, and to
create reasonable run times of simulations.

In this analysis, we find that FDTD has a maximum per-
centage error of 0.28%, while ADI-FDTD has a maximum
percentage error of 0.69%. This illustrates that the ADI-FDTD
scheme is less accurate than the FDTD scheme. However,
both these errors are quite small, for most applications. The
ADI-FDTD scheme as formulated in [5] and [6] issecond-order
accurate in space, andsecond-order accurate in time, similar
to FDTD. However, a one-dimensional (1-D) analysis can
show that the difference in the accuracy can be attributed to the
fact that ADI-FDTD is not staggered in time, where FDTD is
staggered in time [13].
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We have shown that for the same spatial and temporal sam-
pling, FDTD is more accurate, or the ADI-FDTD has a larger
error term as compared to FDTD. The larger error term trans-
lates to more numerical dispersion for the same configuration.
Following this, one would initially determine that a user must
sacrifice accuracy for reduced run time. From an error perspec-
tive, it would appear that FDTD is a superior scheme com-
pared to ADI-FDTD. For marginally resolved spatial problems,
this is true. However there exists a class of problems for which
ADI-FDTD gives a significant advantage over FDTD. For this
class of the problem, ADI-FDTD greatly reduces the run times
compared to FDTD. This class of problems is referred to as
ADI-FDTD class problems.

III. I DENTIFICATION OF ADI CLASS PROBLEMS

We begin the identification of this class of problems by set-
ting a level of acceptable error. The obvious choice for this
bound is the maximum percentage error of 0.28% resulting from
FDTD when and . If ADI-FDTD re-
sults in a shorter run time with an error less than or equal to
0.28%, ADI-FDTD will be considered to be a scheme supe-
rior to FDTD. The class of problems that fulfills this condition
are systems that are over-resolved in space. This over-resolution
in space can be a result of geometric features (as discussed in
the introduction), lossy material, or other issues. Another class
of problem that fulfills this condition is when noncubic cells
with large aspect ratios are used (whereis governed by the
smallest noncubic cell dimension). When the FDTD scheme is
used on over-resolved problems (i.e., ), the error is less
than 0.28%. While the ADI-FDTD scheme has more error than
the FDTD scheme, for over-resolved problems the error can be
less than 0.28%. However, as increases for over-resolved
problems, the error also increases. A problem is identified as
an ADI class problem if the application of ADI-FDTD results
in decreased execution time (i.e., an increase in) and the re-
sult also possesses an error level less than 0.28%.

In the analysis of identifying ADI class problems, we assume
cubic cells ( ) and define the spatial
sampling as

(2)

where is the shortest wavelength in the problem space, and
is the spatial resolution in points per wavelength. Using the

CFL condition given i.e., (1) and (2), the standard FDTD time
step decreases asincreases by the following:

(3)

For the purpose of introducing ADI class problems, consider
a situation where a feature size forces a spatial resolution of

. For this value of and , the numerical dispersion
analysis gives an error greatly below the acceptable error level
of 0.28%. The CFL bound forces an improvement in accuracy
at the cost of longer execution time. If the improved accuracy
is not required, which is usually the case, then the increase in

execution time is prohibitive. ADI-FDTD has no CFL bound
and as such can be increased to a level that results in the
acceptable error with a shorter execution time.

For problems that are over-resolved spatially, we are inter-
ested in determining how much larger the ADI-FDTD can
be increased over while maintaining the same error of a
standard FDTD scheme. To easily identify ADI class problems
we need to derive a formula to estimate the amount of increase
to for a given . This is accomplished by solving the numer-
ical dispersion relation.

To find the amount by which can be increased for a given
, we iteratively solve the numerical dispersion relation until

we reach the value of that gives the acceptable error. For
cubic cells, we define the time step for ADI class problems that
have the desired acceptable error as

(4)

To estimate we set the error to 0.28%, to a given level,
and solve for . We repeat this process for a range of and
plot the trend in Fig. 1. From the curve in Fig. 1 we derive the
relation

for (5)

For example, let ; from(4) and (5) we find a time
step for ADI-FDTD that is 17.5 times greater than FDTD. Be-
cause ADI-FDTD is more computationally intensive compared
to FDTD, increasing the time step by a factor of 17.5 does not
reduce the execution time the same amount. The next section
addresses this issue. Using (5) we can easily predict the amount
of increase while preserving the desired accuracy.

Combining (2), (4), and (5) into one equation yields

(6)

From (6), we conclude that for ADI class problems the time step
is independent of spatial sampling. The 20 in the denominator
of (6) is the result of setting the acceptable error to 0.28% or

in FDTD. Setting the acceptable error level to FDTD
with yields for (5). One could also interpret
(6) as setting equal to with at the resolution
of acceptable error. In a recent paper [15], Zhao investigates the
same issue of requirements for a desired numerical disper-
sion accuracy. Zhoa takes a different approach and shows dif-
ferent types of results for time step versus accuracy for both uni-
form and nonuniform meshes. Zhoa does agree with our finding,
in that the efficiency and accuracy of the ADI-FDTD scheme is
significantly improved when the spatial sampling () is high.

This analysis in this section shows that the standard FDTD
scheme time step is governed by the CFL, while the ADI-FDTD
scheme is governed only by the accuracy one desires. Thus, the
time saving can be tremendous, and the more over-resolved a
problem is, the more the time is saved with the ADI-FDTD
scheme. This feature of the ATD-FDTD scheme makes it well
suited for a large set of EMC applications.
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Fig. 1. Plot showing the bound on�t as the spatial sampling is increased for the ADI-FDTD scheme.

IV. ESTIMATING TRUE TIME SAVINGS

Execution time is a function of the problem space being sim-
ulated, , and the number of time steps,

execution time (7)

where is the total number of field points in the problem
space. Deriving a closed form expression for is not fea-
sible. is highly dependent on the implementation style of
the ADI-FDTD algorithm and on the machine used to execute
the code. Because of this dependency, only an empirical form
of is presented.

ADI-FDTD splits each time step into two half time steps,
resulting in more update equations per. Also, the tridiagonal
solver of ADI-FDTD is computationally more intensive than
the explicit update of FDTD. To obtain an empirical expression
for , real FORTRAN code is timed out in operation. All
computations in this section were performed on a SGI Octane,
however it is noted that the following technique removes any
dependency to a specific machine.

The execution time of a single time step for an entire
problem space is proportional to the total execution time and
the number of unknowns in the problem space as

total execution time
(8)

Equation (8) is essentially an average, where the accuracy in-
creases with more time steps or . Equation(8) was re-

peated with increasing , until converged to a constant
value. This process was repeated for increasing values of,
with the results summarized in Fig. 2. Fig. 2 reveals a linear re-
lationship between and for large values of .

The execution time can now be expressed as

total execution time (9)

where is an empirical function found from the curves
in Fig. 2, and is linear for large values of . Using (4), (5),
and (9), we can calculate a time estimate for FDTD and ADI-
FDTD. The difference between the two is an estimate of the true
time savings for a problem, and is given as

savings

(10)

where is the required simulated time for the EM system,is
the maximum speed of propagation, and and
are empirical functions as given in Fig. 2.

An example will illustrate the simplicity and usefulness of
(10). Given cubic cells, with mm, m,

ns, and a 100 100 100 problem space, (10) yields
a savings of 20.32 h. Individual execution times are respectively
22.35 and 2.02 h for FDTD and ADI-FDTD. If the required
simulation time is increased by a factor of 10, or 96 ns,
the resulting savings would be over 8 days.
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Fig. 2. Plot of the execution time for a single time stept as a function of problem spaceTot .

From Section III we determined that a problem must be over
resolved to take full advantage of the ADI-FDTD scheme. Equa-
tion (10) gives a measure of the advantage. It should be noted
that (10) was developed for a vacuum problem space with per-
fect electric conductor (PEC) boundary conditions. To estimate
the time savings for an ADI-FDTD code with other features one
must calculate a new form for and generate new curves
in Fig. 2. It is also noted that though and are
machine dependent, the relative difference is not.

V. HIGHER ORDER ADI

A. Higher Order Spatial Schemes

Increasing spatial accuracy is a very direct way to improve
the performance of a scheme. Expanding the spatial derivatives
of ADI-FDTD in a fourth-order Taylor-series expansion results
in a scheme accurate tofourth order in space, referred to as
ADI-S24. A stability analysis, omitted here due to length re-
strictions, reveals ADI-S24 to be unconditionally stable (for de-
tail see [13]). The expression for numerical dispersion provides
a means to evaluate the scheme’s performance relative to FDTD
(the standardsecond-order space and time FDTD scheme) and
ADI-S22 (formally referred to as ADI-FDTD). For coarse res-
olution, the dispersion error is dominated by, which is un-
affected by spatial accuracy. For over-resolved problem spaces

we need to formulate a similar expression for, as in (5). For
ADI-S24 we find

for (11)

This is a very slight increase as compared to thefor
ADI-S22. From (11), we can determine that higher order
spatial ADI-FDTD schemes do slightly improve the associated
dispersion error. However, this improvement comes with a cost
of complexity and an increased time for a singleexecution.
The application of higher order spatial schemes to ADI class
problems appears to provide no benefit to overall performance.

The lack of improvement from higher order spatial schemes
to ADI-FDTD can be understood by returning to higher order
FDTD schemes. To take advantage of the improved accuracy in
the spatial domain, the temporal resolution must be increased
[16]. Increasing temporal resolution is equivalent to decreasing
the time step . The power of ADI-FDTD lies in its ability
to increase , and thus reduce execution time. In every case
where ADI-FDTD had superior performance as compared to
FDTD, the time step was increased. Because of this, higher
order spatial schemes provide no benefit to ADI-FDTD for ADI
class problems.

This conclusion is supported by (6). Equation (6) reveals ADI
class problems to be independent of spatial sampling. To im-
prove the accuracy of one must increase accuracy in the
temporal domain.
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B. Higher Order Temporal Schemes

Higher order temporal derivatives may be used to improve
the performance of ADI-FDTD. Candidates for higher temporal
accuracy include direct expansion of, the “modified equa-
tion method” [17] [18], and multistep methods. Higher order
Taylor expansions of for wave-type equations are inherently
unstable [19]. The “modified equation method,” and multistep
methods are revealed to be inappropriate for ADI class prob-
lems.

The “modified equation method” transforms a higher order
time derivative to a series of higher order mixed spatial deriva-
tives. The numerical evaluation of a mixed derivative results in a
stencil that spans more than one dimension. This characteristic
will negate the use of the tridiagonal solver. The use of a tridiag-
onal solver allows the implicit formulation to be computational
efficient. This is a subtle, but important point. The numerical
derivatives of ADI-FDTD must be contained in one dimension.
This fact also precludes the use of any modified higher order
spatial schemes [13] and [16].

The combination of multistep methods with the method of
lines, provides a convenient and powerful technique to evaluate
higher order temporal derivatives. The goals in investigating
higher order temporal schemes for ADI-FDTD applications can
be grouped into two categories. First, we wish to increase the
temporal accuracy in order to improve upon in (6). This
equation was developed by exploiting the unconditionally stable
nature of ADI-FDTD. The parallel for multistep schemes is re-
ferred to as A-stable schemes. An A-stable multistep scheme
would result in an unconditionally stable scheme for FDTD ap-
plications. The first Dahlquist stability barrier states that the
highest order of accuracy for an A-stable multistep method is
secondorder [19]. Essentially, it is theoretically impossible to
improve on (6) using multistep methods.

The second objective of the temporal investigation is to find
a more accurate scheme when the spatial sampling is moder-
ately resolved, or non-ADI class problems. No multistep for-
mulation was found which possess accuracy higher thansecond
order with a stability domain beyond the CFL bound [13].

Higher order implicit Runge–Kutta (RK) methods have re-
cently been applied to systems of equations, and result in an
A-stable or unconditionally stable scheme. Implicit RK methods
for systems of equations effectively require multiple time steps
to be solved simultaneously, which may be computationally pro-
hibitive. Research is presently being conducted on integrating
implicit RK methods with ADI-FDTD.

VI. M ATERIAL DISPERSIONMODEL

In many applications, electromagnetic fields encounter fre-
quency-dependent materials (i.e., material dispersion). In order
for the ADI-FDTD scheme to be useful for a general class of
problems, it must be capable of handling material dispersion. A
method for incorporating material dispersion into ADI-FDTD
is presented in this section.

The method we have chosen to simulate the frequency de-
pendence of the material is afirst-order Debye model [20]. The
following scheme is developed using the concept of magnetic

polarizability with the Debye model. This approach can be gen-
eralized for electric losses as well [20].

The field is given by

(12)

where . is referred to as the magnetization
density and the magnetic susceptibility. The frequency de-
pendence is given by afirst-order Debye model as

(13)

where and are constants representing the absorption peak
and the relaxation frequency of the bulk material. Thisfirst-
order Debye model is very accurate in modeling various mate-
rials, including ferrite tiles. By replacing the with ,
we obtain a time-domain operator relating the current time value
of to the previous time values of and . This process
yields a partial differential equation (PDE) for as

(14)

It should be noted that loss mechanisms that behave differently
than a simple first-order Debye model can be realized with a
series offirst-order Debye terms, see discussions in [20] and
[21] for details.

A few comments are in order about the procedure used for
incorporating the Debye model for frequency dependent mate-
rials. Since the is given as a multiplication of and in
the frequency domain, it will result in a convolution in the time
domain. Incorporating frequency dependence results in an eval-
uation of a convolution integral. The procedure presented here
is an alternative to the conventional method for performing the
convolution. This approach is essentially a differential form of
the convolution which is equivalent to the integral form. How-
ever, this differential approach is easier to implement for cer-
tain materials [20]. There are other alternative methods for eval-
uating the convolution integral, for example the-transform
method [22], which like the differential approach, involves a
manipulation of the convolution integral.

The challenge of developing an ADI-FDTD scheme with ma-
terial dispersion involves formulating an update equation for

that is unconditionally stable. This is accomplished via a
Crank–Nicolson approach. The Crank–Nicoloson technique is a
well reported unconditionally stable numerical scheme [2]. Ap-
plying this scheme to the PDE in (14) yields a first subiteration
update for as

(15)

For clarity, it is noted that has three components to match the
three components of . The update equations for and are
found following the same process as outlined in [13].
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Fig. 3. Comparative error plots of ADI-FDTD with material dispersion, showing the resulting error as�t increases.

A. 1-D Scheme

The PDE’s that make up FDTD for the 1-D case are well
known. When afirst-order Debye model is included the re-
sulting 1-D system is

(16)

(17)

(18)

Applying the ADI technique yields two subiterations. For the
1-D case there are three equations per subiteration. We should
note that in general,may be frequency dependent as well and a
similar procedure can be followed to handle material dispersion
in (see [20] and [21] for details). However, in order to simplify
the discussion of the use of the Debye model in the ADI-FDTD
scheme we concentrate only on frequency dependent. In ad-
dition, the examples shown here are for lossy ferrite materials,
which are accurately represented by constantand frequency
dependent [23].

To validate the 1-D scheme, we compare the analytical
and numerical plane wave attenuation over a fixed distance
as a function of frequency. Fig. 3 compares the analytical
plane-wave loss [which we defined as ,
where in the imaginary part of the complex wave number
in the medium and is the distance the wave travels] with
the loss obtained from the ADI-FDTD scheme for increasing

values of . The plane-wave loss is simply the difference
in amplitude of the wave at a distancefrom the incident
amplitude (then normalized to the incident amplitude). The
CFL stability constraint for a 1-D problem is ,
where represents the maximum velocity in the medium [1].
All curves in Fig. 3 were calculated using and

, which is indicative of absorbing ferrite tile
[20]. Fig. 3 validates the unconditionally stable performance of
the ADI-FDTD scheme with material dispersion. As expected
the accuracy decreases as the time step is increased and as
frequency increases.

As discussed previously, ADI-FDTD is most beneficial
when applied to over-resolved problem spaces, referred to
as ADI class problems. By defining the spatial sampling by

(where is referred to as the spatial sampling),
the CFL constraint is given by . Following
similar arguments as above we find the time step for 1-D ADI
class problems as

(19)

From (19), we observe that for ADI class problems the time step
is solely determined by temporal sampling.

Fig. 4 compares the analytical plane-wave loss [i.e.,
] with the numerical loss obtained from ADI-FDTD

for increasing values of . From Fig. 4 we note that ADI-FDTD
applied to over-resolved problems yields an increase in the time
step while maintaining the acceptable level of accuracy. Fig. 4
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Fig. 4. Comparative error plots showing that ADI-FDTD with material dispersion retains the ability to accurately model ADI class problems.

validates ADI-FDTD with material dispersion as being appli-
cable to ADI class problems. The purpose of the 1-D valida-
tion is to show the unconditionally stable performance of the
technique, and to show the relative error performance that will
follow in the 3-D case.

B. 3-D Scheme

The update for is once again given in (15). Following the
typical ADI-FDTD process the only field quantity solved im-
plicitly are the -field components [6]. With these new-field
values, the and quantities become explicit updates. Thus
the only updates that need further explanation are the-field
ones.

The update equations may be obtained by substitutions or via
a matrix approach. The matrix approach involves use of differ-
ential operators for each derivative. One then forms a matrix
system for each subiteration. For example, the first subiteration
would yield

(20)

where is a one-column vector containing, , and at
each Cartesian direction (the superscript oncorresponds to
the step index). is a square matrix of size [9 9]. From

, one may construct the continuous form of the-field up-
dates. To obtain the discrete updates, one evaluates the contin-

uous derivatives with the correct numerical evaluation [13]. The
complete tridiagonal update equation for the field is

(21)

where

(22)



164 IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, VOL. 45, NO. 2, MAY 2003

TABLE I
RESULTSVALIDATING THE UNCONDITIONAL NATURE OF THEPROPOSED3-D

ADI-FDTD MATERIAL DISPERSIONSCHEME

If is equal to zero, the medium is frequency independent and
(21) reduces to the standard ADI-FDTD update equation.

We employed the cavity-resonance problem as described in
[6] as a validation model. We set m,
and used a problem space of 1020 15 cells. For ease we
completely filled the metallic cavity with a dielectric of

. For a nondispersive cavity, the CFL time step was found
to be 1.54 ns. The fundamental resonant frequency was found
analytically to be 15.6 MHz.

The first validation is to set , which effectively gives
a nondispersive material. Using the CFL time step. we found a
numerical resonance at 15.6 MHz. Increasing theby a small
amount introduced a proportionally small amount of dispersive
loss. Setting and yielded a numer-
ical resonance at 15.47 MHz. This is in close agreement with the
analytical estimate of 15.48 MHz. The analytical estimate was
obtained by inserting the complex form of into the analytical
expression of a homogeneous filled metallic cavity, and taking
the real part. This estimate begins to deviate from the true reso-
nance as the dispersive losses increase.

The 3-D case was also validated by comparing results of
the material-dispersion model implemented into the standard
FDTD scheme. Thefirst-order Debye model was implemented
into a standard FDTD scheme as reported in [20]. For the results
in Table I, we set , , and .
As before the cells are cubic with 0.1 m dimension. The CFL
for this problem space was found to be ns. From
Table I we conclude that 3-D ADI-FDTD with material disper-
sion is unconditionally stable. The problem for Table I is not an
ADI class problem and as such we expect the decrease in accu-
racy as increases.

In the next example, we investigate a inhomogeneous
filled cavity with dimensions of 60 60 40 mm. Half the
cavity was filled with a lossy material with ,

, and and the other half is filled with
a lossless material with and . The resonance
frequency for the cavity was determined with a standard FDTD
code to be 3.22 GHz; with a ADI-FDTD code, the resonance
frequency was determined be 3.22, 3.23, 3.25, and 3.28 GHz
for , , ,
and , respectively. These results illustrate
that the ADI-FDTD can accurately handle discontinuity of
lossy materials (i.e., inhomogeneous media). The next example
also illustrates this point for thin lossy materials.

For a final example, the time-domain and frequency-domain
results of the field inside a metal cavity with a layer of mag-
netic material 5 mm thick on the walls was investigated. For the
magnetic material we used and .
In this example, we will illustrate that even when the problem

Fig. 5. Comparison of the time-domainE-field waveform in a lossy cavity
obtained from FDTD and ADI-FDTD.

Fig. 6. Comparison of theE field as a function of frequency in a lossy cavity
obtained from FDTD and ADI-FDTD.

space in not over-resolved, ADI-FDTD will give results that are
not only comparable to the FDTD results but are also stable
for . Fig. 5 shows the time-domain waveform
of the field for a differential Gaussian pulse source placed
in the center of the cavity. This figure compares the results of
the FDTD scheme to the results of the ADI-FDTD scheme for

and . Since the metal cavity is
lined with the lossy thin layer of magnetic material, the ampli-
tude of the field damps down fairly quickly. Notice that the
amplitude of the waveform obtained from ADI-FDTD starts to
differ from the FDTD results for ; however, the
ADI-FDTD are stable for . Fig. 6 shows the magni-
tude of the frequency-domainfield. This figure also compares
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the results of the FDTD scheme to the results of the ADI-FDTD
scheme for and .

In all these examples presented here, we have shown that the
ADI-FDTD scheme can substantially reduce the run-time, while
maintaining the desired accuracy level.

VII. D ISCUSSIONS ANDCONCLUSIONS

ADI-FDTD has been reported as a means to increaseat
the cost of accuracy [6]. In this paper, ADI-FDTD has been
revealed as a means to decrease a simulation’s execution time
while fully preserving accuracy. Problems that benefit the most
from ADI-FDTD where identified and referred to as ADI class
programs. These types of problems include problems that are
over-resolved in space and problems where noncubic cells with
large aspect ratios are used. An empirical formula was presented
that gives a bound on for ADI class problems. The accuracy
of ADI class problems was shown to be independent of spa-
tial sampling. Higher order spatial ADI-FDTD schemes were
shown to provide no benefit to ADI class problems. However,
higher order temporal variants have the potential to improve per-
formance for ADI-FDTD. An implicit RK technique is presently
being investigated as a candidate for a higher order temporal
ADI-FDTD scheme.

The ability to incorporate material dispersion into
ADI-FDTD was presented in this paper. Afirst-order Debye
model was used to represent the frequency dependent material
properties. The scheme was implemented into a 1-D and 3-D
problem space. The scheme is shown to be both accurate
and unconditionally stable. Higher order Debye and Lorentz
models of material dispersion are presently being investigated.

ADI class problems result in a reduced run-time, while
maintaining the desired accuracy level. There are various ADI
class problems that exist in the EMC community, making the
ADI-FDTD scheme a numerical technique that will be valuable
for years to come.
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